On the Cauchy problem for the Muskat equation with non-Lipschitz initial data

نویسندگان

چکیده

This article is devoted to the study of Cauchy problem for Muskat equation. We consider initial data belonging critical Sobolev space functions with three-half derivative in L2, up a fractional logarithmic correction. As corollary, we obtain first local and global well-posedness results free surfaces which are not Lipschitz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem for Wave Equations with non Lipschitz Coefficients

In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Well-posedness of the Muskat problem with H2 initial data

Article history: Received 30 December 2014 Accepted 13 August 2015 Available online xxxx Communicated by Charles Fefferman MSC: 35R35 35Q35 35S10 76B03

متن کامل

Cauchy Problem of Nonlinear Schrödinger Equation with Initial Data

In this paper, we consider in Rn the Cauchy problem for the nonlinear Schrödinger equation with initial data in the Sobolev space W s,p for p < 2. It is well known that this problem is ill posed. However, we show that after a linear transformation by the linear semigroup the problem becomes locally well posed in W s,p for 2n n+1 < p < 2 and s > n(1 − 1 p ). Moreover, we show that in one space d...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2021

ISSN: ['1532-4133', '0360-5302']

DOI: https://doi.org/10.1080/03605302.2021.1928700